x^2=10x+25=35

Simple and best practice solution for x^2=10x+25=35 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2=10x+25=35 equation:



x^2=10x+25=35
We move all terms to the left:
x^2-(10x+25)=0
We get rid of parentheses
x^2-10x-25=0
a = 1; b = -10; c = -25;
Δ = b2-4ac
Δ = -102-4·1·(-25)
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10\sqrt{2}}{2*1}=\frac{10-10\sqrt{2}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10\sqrt{2}}{2*1}=\frac{10+10\sqrt{2}}{2} $

See similar equations:

| –2y=–6 | | -3+4w=1 | | 14–2y=8 | | s-38=44 | | 14–6y+4y=8 | | s+29=55 | | 2v=52-4v | | 20=2u+8 | | 2(7–3y)+4y=8 | | j+40=47 | | 6-2(2x+9)=-12 | | p+2=97 | | (x+26)+(19x-4)=62 | | -9=6+x/5 | | -25x^2-5x+12=0 | | 55+35=x | | 5p÷5=(-25)÷5 | | (x+22)+(23x-8)=62 | | x-2x=-1-4 | | 2x-12=3x+20 | | x-2x=-1+4 | | 5p×(-6)=150 | | 0=6x^2+1x-1 | | -15x=-780 | | u+7/8=-1/2 | | 93=-2-5p | | 31-x=0 | | -16.1=u/7+1.4 | | 1/3(x+7)-10=4/5(2x-1)+7 | | 9x^2+15=24 | | -18=2a+4 | | 1=3q-3 |

Equations solver categories